11-12 Jan 2018 Montpellier (France)
Gene network inference using single-cell data: from mechanistic modelling to statistics
Ulysse Herbach  1, 2, 3@  
1 : Laboratoire de Biologie et Modélisation de la Cellule  (LBMC)  -  Website
CNRS : UMR5239, Institut national de la recherche agronomique (INRA) : UR5239, Université Claude Bernard - Lyon I (UCBL), École Normale Supérieure (ENS) - Lyon
ENS de Lyon 46 allée d'Italie 69364 LYON Cedex 07 -  France
2 : Inria team DRACULA  (Inria Grenoble Rhône-Alpes / Institut Camille Jordan)  -  Website
Université Claude Bernard - Lyon I (UCBL), CNRS : UMR5534, CNRS : UMR5208, INRIA, Institut Camille Jordan
Institut Camille Jordan Université Claude Bernard Lyon 1 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex France -  France
3 : Institut Camille Jordan  (ICJ)  -  Website
Institut National des Sciences Appliquées [INSA], Ecole Centrale de Lyon, Université Claude Bernard - Lyon I (UCBL), CNRS : UMR5208, Université Jean Monnet - Saint-Etienne
Bât. Jean Braconnier n° 101 43 Bd du 11 novembre 1918 69622 VILLEURBANNE CEDEX -  France

Inferring regulatory networks from gene expression data is a longstanding question in systems biology. So far, most studies have been based on population-averaged data: now that we can observe mRNA levels in individual cells, a revolution in terms of precision, the network reconstruction problem paradoxically remains more challenging than ever. I will present a bottom-up approach to tackle this problem, going from a mechanistic model of gene expression to a promising statistical model where stochasticity is not just noise but also contains information.


Online user: 1